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Abstract .

“Although 5.4 billion board feet of lumber was converted to
258 million pallets in 1980, design information for notched
paiiet stringers is limited. In this report, methodology is
developed that determines stiffness and strength
reductions caused by notches in pallet stringers.

A finite element (FE) structural model is developed to
model notched stringers. Displacement and stress
predictions agree well with experimental measurements.
The author derived closed form equations that
approximate FE displacements and maximum stresses as
functions of notch depth. The stiffness equations are
based on modeling the stringer with beam elements of an
‘equivalent’ geometry.

The stiffnesses and strengths of 600 full-size, green oak,
pallet stringers with various notch geometries and loading
conditions were measured. Measured deflections agreed
well with stiffness equation predictions. Stringer strength
was unaffected by varying the fillet radii of the notch from
1/2 inch to 1 inch. A group of stringers with sharp,
rectangular notches (no fillet) had lower strength values
than the filleted groups.

| derived equation (15) from the FE results to predict
strength as a function of notch depth for any loading
condition. By adjusting the equation, both mean and fifth
percentile strengths were predicted. Agreement between
predicted strengths and experimental results was
excellent. pa

Keywords: Notched pallet stringers, notched beams, red

oak, structural model, finite element model, stiffness,
stress, fillet radii, filleted notches.
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Strength and
Stiffness Analysis
of Notched, Green
Oak Pallet Stringers

Terry D. Gerhardt, Research Engineer
Forest Products Laboratory, Madison, Wis.

introduction

Although 5.4 billion board feet of lumber were converted
to 258 million pallets in 1980 (McKeever and Hatfield
1984), design information for notched pallet stringers is
limited. Pallet design procedures as proposed by Wallin et
al. (1976) consider design criteria for both stiffness and
strength of notched stringer members. The defiection
equations recommended are the standard elementary
beam equations (uniform-unnotched beam, isotropic
material, Bernoulli-Euler assumption, etc.) which are
modified through an assumption that the deflection
increase from notching is proportional to the material
removed. The strength equations were also determined
from beam theory without any real consideration of the
stress concentration from the notch.

In this study, methodology is developed to systematically
determine stiffness and strength reductions caused by
notches in pallet stringers. The particular objectives are to:

(1) Determine the effects of varying notch depth and fillet
radius on the strength and stiffness of oak stringers
containing a single notch; and

(2) Develop design equations for conventional double-
notched oak pallet stringers.

The scope of this study is limited to the short-term
strength of green oak stringers. This study is part of a
cooperative pallet research program involving the National
Wooden Pallet and Container Association (NWPCA),
Virginia Polytechnic Institute and State University
(VPI&SU), and the Forest Service. Results from the study
will be implemented in a computer structural model of a
pallet, which is a main objective of the overall cooperative
research program.
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The notched beam literature has focused mainly on
notches with sharp corners cut in clear wood. Hirai and
Sawada (1980) present experimental results from tests on
Akaezomatsu (Picea glehnii) with rectangular edge
notches of various depths and widths. A size effect for
both beam depth and width was observed, although the
latter was not evident for beams with wide notches. An
empirical model to predict moment-carrying capacity was
derived based on the principles of linear elastic fracture
mechanics (LEFM). Murphy (1979) also used a fracture
mechanics approach to predict failing loads for slit-
notched beams. Experimental results for clear Douglas-fir
beams with both rectangular and slit notches are
presented. Murphy concludes that slit-notched beams
have a lower strength than rectangular-notched beams
when the remainder of the geometry is the same. Stieda
(1966) tested green and kiln-dried notched Western
hemiock, Balsam fir, and Eastern white cedar. Results
show that narrow notches have a relatively larger effect
on strength than wide notches. Additionally, Stieda
compares a small slit to a small semicircular hole and
finds no great difference in strength.
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Palka and Holmes (1973) report experrmental results for
small square-notch cantilever beams of green, clear
Douglas-fir. Strength and stiffness versus depth
regression equations were developed from the data.
Ultimate loads and stiffnesses were found to strongly
depend on beam depth. The strong dependence of
strength on grain slope was observed by Leicester (1974)
In tests of Australian timbers with sharp rectangular
notches. The author also tested wood with slits of varying
notch radii. Strength was found to be somewhat
independent of notch root radii. Recently, Leicester and
Poynter (1980) proposed design equations for beams with
unfilleted notches. Richards (1974) tested clear, yeliow-
poplar beams with shallow. curved notches on the
compression side. Richards found little dependence of
strength on notch root radii or notch depth.

The notches cut in pallet stringers are rectangular edge
notches with fillets for stress relief. Examination of the
stiffness- and strength-reducing effect of this notch in
wood beams has received limited attention in the
literature. Stern (1972) tested pallet stringers to examine
potential strength improvement from the use of cross nails
in the notch region. The effects of notch geometry on
strength were not considered. Recently Bastendorff and
Polensek (1981.1984) tested notched and unnotched red
alder pallet stringers. The effects of notching on modulus
of elasticity (MOE) and modulus of rupture (MOR) are
presented for one particular geometry. The results
indicate a 37-44 percent reduction in MOR for notches
with a 9-inch width. 1.25-inch depth, and fillet radius of
0.75 inch.
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Experimental Procedure

In this section, experimental procedures are detailed. In
summary, 600 oak pallet stringers were selected from a
single mill using industry quality guidelines. Pallet-type
notches of varying geometries were cut into 510 of the
stringers. Boards were mechanically tested to examine
effects of loading conditions and notch geometry on
stiffness and strength of pallet stringers.

Materials

Red oak pallet stringers were selected from a single mill.
Boards were green and had approximate dimensions of
48 x 3.75 x 1.5 inches. In selecting each board, NWPCA
quality guidelines for pallet stringers (NWPCA 1982) were
foliowed. Rules for both limitation of defects in the
stringers and notch geometry are summarized below.

1. Knots and holes. The diameter of sound knots shall be
no greater than one-haif the width of the piece in which
they occur. Loose or holiow knots and holes shall not
exceed one-quarter the width of the piece in which they
occur. Knots over 1/2 inch shall not be allowed in the
stringer immediately over the notched areas.

2. Splits, shakes, and checks. Crack or grain separation
length must be no longer than twice the width of the piece
if contained by nailing. Checks are unlimited in quantity,
length, and location.

3. Cross grain. Slope of grain must not exceed 1 inch in
5 inches.

4. Wane. Wane is limited in stringers to one-third nailing
face. one-half other face, and uniimited in length.

5. Decay. Decay is not permitted.

6. Notches. To be 1-1/2 inches deep x 9 inches long
across the bottom, 3/4-inch radial cuts at top corners, and
a minimum 7-inch flat surface at the top. Ali dimensions
excepting the minimum to be + 1/4 inch.

These rules were amended slightly in regard to restriction
of 1/2-inch knots near the notch. Typical specifications
often require that no knot be within 2 inches of the cutout
area (Mclain 1982). This criterion was used in the
selection process.
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(1) unnotched,
(2) single notched, and
(3) double notched.

Methods

described in the next section. After notching, all

maintained in green condition.

Experimental Design

of the following categories:

about the center of the stringer (fig. 2), and
(3) unnotched stringers.

and closest notch edge (m).

AAAr Sl A0 B AR S Al v At Bl And e b senh Andh Maiads an i SR i it S-S ahdaies S RS i Ae0 Bt lran o byt da gy

2y
SUNORE
]
b.. . \."
—— .-_ <
Stringers were randomly sorted into nine different groups. v .
Every group was associated with either a particular notch .
geometry (single or double) or an unnotched control e 872 . .
group. The amended criteria for knots near the notches ! . H — 0 - -
complicated the selection process. For each group, knots ! X ! ' ' T
were excluded from different regions of the stringer VY |e IJ 2 ! . id
depending on location and depth of the notch or notches = + + ¥ - O
to be cut. Tha knot criteria, in effect, sorted stringers with [ TR ﬂ) n Y
various amounts of clear wood into different groups. — (D’ 14 -— % e :‘
Generally speaking, an increasing amount of clear wood £ RN
was contained in groups with stringers that were: e
group 9 L-————-{-——-{-———l] ")
s . - :
k- { —1 o
Boards not satisfying knot or other grading requirements f,(ffarg 51'5Ef)'nglemomhed stringer geometry. -1
for the group being sought were rejected. A total of
1,480 boards were sampled to obtain the 600 selected.
k .-
, [
After sampling was completed, 1 or 2 notches were cut in e s — ! p
390 boards with an'industrial (single) notching machine. e 1 e I o 3 el .
Two notches were cut by making two passes on the same : v ' ) » ! o
stringer. Details of the various notch geometries cut are pul l’ . L £ 1 ‘ ! .
7 q] :[' -
600 boards were dipped in a 0.5 percent solution of w f(«I («71 B *
sodium pentachlorophenate to inhibit the growth of biue : e 7 Y
stain. The boards were then stacked for several minutes .
before being loaded on pallets and sealed in plastic. The . N ' , , N R
stringers were transported to the Forest Products I- +_ j e
Laboratory (FPL), Madison, Wis., and stored at 36° F until I ) } e
tested mechanically. In this manner, boards were I ! 1 L
Figure 2.—Double-notched stringer geometry. .
(ML84 5505) . @ ;
The 9 groups based on notch geometry were randomily i R _'_-"
subdivided into 20 groups containing 30 boards each. The following scheme was, used for the group o
Each of the 20 groups represents a specific notch identification labeis. The first letter refers to loading L
geometry and loading condition. The groups all fit into one condition: M anq C indicate two-point and center-point e
loading, respectively. For groups containing single notched - — 4
‘ _ _ stringers, the second letter refers to a particular notch .9
(1) stringers containing a single center notch (fig. 1), dimension which is varied in a series of groups. Thus, the R
(2) stringers containing two notches cut symmetrically letters D, R, and S indicate notch depth, fillet radius, and AT
cut slit at fillet, respectively. For groups containing i R
stringers which are double-notched or unnotched the e
Figures 1 and 2 give the geometric quantities defining second letter is T or C respectively. DAY
board and notch dimensions which are: stringer length (), . . N
stringer height (h), stringer thickness (t), notch depth (D). Single-Notched Stringers .9
notch width (W), fillet radius (p), and distance between Although pallet stringers are double notched. single. : 1
notches (2q) (fig. 2 only). The geometric quantities defining center-notched stringers (fig. 1) more clearly expose the .
foad and support conditions are: distance between effects of notch depth, fillet radius, and loading conditions 1
supports or span (s), distance between support and on stiffness and strength. Notch dimensions and loading .
symmetric load point (a), and distance between support conditions for the groups containing single, center notches
are presented in table 1. All boards have common
dimensions: W = 9.0 inches, s = 44 inches, and o
m - 17.5 inches. T
~.1
Ty
3 :
* )
4
.» . . " .. ., ' 4
. c et - . . - - N 44
L e e A A ala D al - PRI I '\"‘, —ar i c .‘;A-‘ -t - -:.-J
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Table 1.—Groups containing single-notched stringers’ (fig. 1)

G}bup No?ch din—le/nsions

) ' Boards . [ v

':;:;::m tested Loading P D
------------------ In, =semmeersmennnneas

M-0-1 30 QpP? 0.50 1.0

M-D-2 30 Qr 50 1.5

M-D-3 329 QP 50 1.875

M-D-4 30 Qp 50 25

C-D 30 Cpe 50 10

C-D-2 30 cp 50 1.5

C-D-3 30 cpP 50 1875

C-D-4 28 cpP 50 25

M-R-1° 30 QP 50 15

M-R-2% 30 QP 75 15

M-R-3% 30 QP 1.00 15

M-R-0* 30 QP ) 1.5

M-S-17 30 QP 50 1.5

M.S-2¢ 30 Qe .80 15

! étr]nger dimensions (appro;frwz-n_tc_ei: ¢ =48in.h = 375mn. and
t = 1.5.n Notch and support dmensions: W = 9.0in.. s = 44
in.andm = 17.5.n (see fig 1).

2 Quarter-point loading {a - 11.n}

¥ Mistakes during notching resulted in less than 30 boards.
* Center-point loading

* Notches cut at FPL

¢ Sharp notch, no fillet.

T 1/2-in. sht cut into top of fillet.

¢ 3.in sht cut into top of fillet.

In series M-D-1 through M-D-4 and series C-D-1 through
C-D-4 the effect of notch depth on stringer stiffness and
strength 1s examined under quarter point (a = 11in.) and
center-point loadings, respectively. The industrial notcher
was adjusted to cut notch depths varying from 1.0 to

2.5 inches (see table 1). The notcher cut an approximate
fillet radus of », = 0.50 inch. This radius represents the
low end of the NWPCA allowable (0.75 in. -~ 0.25 in.).

The effect of fillet radius on stringer stiffness and strength
was examined with groups M-R-1 (¢ = 0.50 in.), M-R-2

w 075in) M-B-3(p - 1.00in.). and M-R-0 (sharp
notch) All four groups were quarter-point loaded and had
notch depths of D 1.5 inches. Since the fillet radii were
not readly changeable on the industrial notcher, the
notches were cut at FPL. The procedure followed was to
dnll appropnate size holes in the stringer and then cut the
remainder of the notch with a bandsaw. The industrial
notcher utiized cutting tools mounted on a rotating shaft.
Comparison of results from groups M-D-2 and M-R-1
allows a comparison of the notching techniques; stringers
in the two groups have the same notch geometry and
loading conditions.
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Two additional groups (M-S-1 and M-S-2) had stringers
notched on the industrial notcher with D = 1.5 inches and
p = 0.50 inch. Stringers in these groups had slits cut
paraliel to the wood grain at the top of the fillet with a
bandsaw. The slits were cut at FPL and were either

1/2 inch (M-S-1) or 3 inches (M-S-2) in length. These
groups allow a qualitative examination of the effect of
splits at the fillet on stringer stiffness and strength.

Double-Notched Stringers

The experimental design of the three groups containing
double-notched stringers (fig. 2) is presented in table 2. All
boards had common dimensions: D = 1.5 inches,

W = 9inches, p = 0.50 inch, and q = 8.5 inches. Groups
C-T-1 and C-T-2 were center-point loaded, and group
M-T-1 was two-point loaded (a = 9.0 in.). The spans were
s = 44 inches (m = 4.5 in.) for groups C-T-1 and M-T-1
and s = 40 inches (m = 2.5 in.) for group C-T-2. The two
spans examine the effects of support length on stringer
stiffness and strength.

Unnotched Stringers

Unnotched stringers were tested in quarter-point (M-C-1)
and center-point (C-C-1 and C-C-2) loadings as shown in
table 3. Spans were s = 44 inches for groups M-C-1 and
C-C-1 and s = 40 inches for group C-C-2.

Table 2.—Groups containing double-notched stringers' (fig. 2)

Group Notch di .
; ¢ Boards . otch dimensions
:Iengl- tested Loading

cation s m

in.

M-T-1 30 TP2 44 45
C-T-1 30 cp3 44 45
C-T-2 30 cP 40 25

' Stringer dimensions (approximate): ¢ = 48 in., h = 3.75 in.. and
= 1.5 in. Notch and support dimensions: D = 1.50 in, W = 9.0

in., p = 0.50in., and g = 8.5 in. (see fig. 2).

2 Two-point loading, a = 9.0 in.

? Center-point loading.

Table 3.—Groups containing unnotched stringers®

Group
identi- oo Loading s
fication

in.
M-C-1 30 QpP? 44
C-C1 30 cP? 44
C-C-2 30 CP 40

' Stringer dum_eahgio—m (approximate): € = 48in., h - 3.75in .and
t- 1.5in

2 Quarter-point loading. a = 11.n.

3 Center-point loading.
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Test Procedures
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Theory

Finite element (FE) structural models of notched paliet
stringers are presented in this section. Displacements and
fillet stresses are computed for various notch geometries
and stringer material properties. Closed form equations
for stiffness ang maximum fillet stress are also derived.

Finite Element Modeling

FE models of double- and single-notched stringers are
shown in figures 4 and 5. respectively. Note the
exploitation of symmetry in the modeling. Cubic
isoparametric plane elements (Zienkiewicz 1977) model
the strinaer except in the vicinity of the fillet. The 12-node
Isopdarametric elements are contained in a computer
program developed by the author (Gerhardt 1983).

The fillet region of the notched stringer i1s modeled with a
special hybrid FE (Gerhardt 1984). Formulation of this
element contains the following features:

(1) All governing differential equations of linear elasticity
theory are satisfied in the element's interior using complex
vanable theory.

R oDt i S e i Bl At i B s - ot
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{2) The shape and stress-free conditions are satisfied
exactly on the fillet surface using conformal mapping and
reflection arguments.

(3) Continuity of analytic and polynomial displacement
fields is satisfied in an approximate manner on the

remaining boundary using a variational principle. -

Results employing a hybrid element with conventional
displacement-based finite elements were ccmpared
previously with elasticity sotutions (Gerhardt 1984). The
hybrid element was found to be remarkably accurate and
efficient.

The author's computer program generates meshes from
specification of h, D. p, and Q. Variable Q is defined as the
lengths of the two sides of the hybrid element closest to
the fillet as shown in figures 4 and 5. Modeling with the
hybrid element is convenient since accurate results are
obtained using a single element at each filtet. Further, the
cubic element computes fairly consistent results, even as
its aspect ratio is changed when meshes with different
notch geometries are generated.
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in Appendix A, FE computed displacements are compared
to experimental measurements on a small, single-notched,
Sitka spruce stringer. FE computed fillet stresses are
compared to photoelasticity measurements. These
comparisons with experimental data indicate that the FE
model computes reliable displacements and fillet stresses.

Assumed Elastic Properties

For an orthotropic solid loaded in plane stress, the
governing differential equation of linear elasticity theory
can be formulated in terms of the material constants « and

i‘ ~» (Gerhardt and Liu 1983) where
{ —
s ‘/" E, 1 E,
[ Ve e a =y, <G., - 2) (N
s
The constants E. G, and « represent Young's modulus, the

[ shear modulus. and Poisson’s ratio, respectively.

q Subscripts indicate directions in the standard manner.

When the x direction 1s associated with the longitudinal (£)
axis and the y direction with the radial (r) or tangential (t)
axes, the term 2r, 1s much smaller than E,/G,, for most
wood spectes (Bodig and Goodman 1973). Thus,
computed displacements and stresses can depend on the
value chosen for r,, only slightly. Furthermore, the resuits
can be characterized in terms of the ratios €,/G,, and
E,/E, ' The ratios chosen for the FE analysis which follows
are hsted in table 4. Most wood species have elastic
property ratios that fall between these broad ranges
(Bodig and Goodman 1973). All FE calculations employed
plane stress analysis with E, = 1,500.000 Ib/in.? and

in 035

Stiffness

The accuracy of the FE model is experimentally verified in
Appendix A for stiffness computations. Closed form
equatons, however, are preferred for design applications.
Further, the FE stringer models cannot be readily used in
a structural pallet model. Using such a detailed model for
each stringer will result in an excessive number of
degrees of freedom for the pallet.

In this section, closed form equations for stringer stiffness
are derived. These equations are based on a simplified
structural model for a notched stringer. The closed form
equations are compared to FE results.

' Displacement boundary conditions will introduce other combinations of
elashc constants into the formulation (Gerhardt and Liu 1983). In modeling
tra stringers, the only displacement conditions imposed are at the
supports Any difference in stress computation between this problem and

¢ one with the resultant forces apphed at the supports must be localized in
nature by Saint Venant's principle (Timoshenko and Goodier 1970).

Table 4.—Assumed elastic property ratios for FE analysis’®

Group

identification E/Gyy EJ/E,
G8-E6 8 6
G8-E12 8 12
G16-E12 16 12
G16-E24 16 24
G32-E12 32 12

G32-E24 32 24
'E, - 1.500.000 ib/in.2 and v, = 0.35 for all.

Stiffness Equations

Hirai and Sawada (1979a) developed a method for
estimating center deflection in wood beams containing
square notches. The method is loosely based on the
concept of released strain energy. In essence, the notch is
replaced by tapered and rectangular sections as indicated
by dashed lines in figure 1. The slopes of the tapered
sections are specified by the constant « as shown. The
authors computed center beam deflection for this
‘equivalent’ geometry using elementary beam theory. They
empirically determined « from third-point bending tests of
one species (Abies sachalinenis Mast.) with beams of
dimension s = 750 mm, h = 50 mm, and t = 20 mm, and
a center notch of width W = 10 mm (see fig. 1) for the
cases » = 0.10, 0.30, and 0.50, where ¢ is defined as the
dimensionless notch depth, ¢ = D/h. The best
experimental-theoretical agreement was obtained by
taking « = 5. The authors aiso tested additional beams
with notch dimensions ranging from W = 3 to 80 mm and
¢ from 0.10 to 0.50. Center deflections computed by the
model with « = 5 agreed well with experimental
measurements. In another study Hirai and Sawada (1979b)
tested beams of seven different Japanese wood species
with notches of various depths and saw kerf width

(3.0 mm). Good experimental-theoretical (« = 5)
agreement was obtained for both center-point and third-
point loading.

Differences in deflections of wood beams containing
square notches compared to filleted notches will be
negligible. The method previously described is therefore
applicable for notched pallet stringers. One modification
was made in derivation of equations presented here. Hirai
and Sawada (1979b) replaced the distance between
double notches by a flat section of minimum width, i.e.,

h — D. Calculated deflections were larger than measured
deflections by 2 to 33 percent. The difference may be
even greater for pallet stringers due to the substantial
distance between notches. In the equations derived here,
‘equivalent’ tapered sections are used on both sides of
both notches.




Uty zing this “equivalent geometry. closed form
exoressions for deflection ¢of any point can be denved
us ng Castighano's theorem (Seely and Srith 1955).
Aithaugh the equivalent geometry 1S quite simple,
agerrac mampulatior becomes quite tedious.
Computations were theretore done in symbolic algebra
(Hearn 1973) on a Sperry 1100/82 computer. Stringer
deflectons ., (@t x s,/2)and "_(at x a) were
cons.dered

The autnor derived the foliowing expressions for double-
notened stringers (fig 2) loaded under three different
zoraiters center point (CP). two point (TP), and untform

Uy For@licasas.m ~ a - m - W,
Ps?
W a8E1 " CP load (2a)
Pai3s? 4a‘)
48E) v CP ioad (2b)
Qai3s? 4a?)
o A8E! v TP load (3a)
. 4Qa¥3s  4a)
[ 48E Yoo TP load (3b)
Sws*
o 184E | v U load (4a)
wal(s’® 2sa¢ - a’)
‘v";o U load (4b)

24Ei

The author aiso derived the foliowing expressions for
s:ngle-notched stringers (fig. 1). For all cases. 0 < a = m
and 0 - m oD

, Ps
. Me CP load (5a)
48E1
Pa(3s? 4a?)
! CP load 5b
48E] Ta ( )
Qa(3s? 4a?
‘ ) My TP load (6a)
48EI
4Qa¥43s 4a
B a ) Naes TP load (6D
48El
S5ws*
o 7 U Inad (7a)
384E1
als’ 2sa? - ah
wais - U 1oad (7b)

24E1
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The constants in these express:ons are defined as
fotlows:

(1) P and Q/2 are concentrated loads applied as shown in
figures 1 and 2.

(2) w is a uniform, distributed load applied between the
supports with dimension force.length.

(3) Dimensions s and a are defined in figures 1 and 2.
(4) E 15 the modulus of elasticity (MOE) and 1t contains
shear deformation and depends on loading conditions
(5) | is the second area moment for the unnotched cross
section, i.e. | = th¥/12 .

(6) ¢, and », are dimensionless factors defined n
Appendix B which depend only on geometrical quantities.
i.e.ono m h W, a, s and «.

The coefficients of |, and 5, in each expression are
unnotched beam deflections for the relevant tocation and
loading condition. The fact~ and n, should be
interpreted as the contr the notch to beam
deflection.

Comparison of Stiffn_ss Equations with FE Results

FE stringer models were '~ .ted with the same
geometries as those mecharucally tested. All models
generated had dimensions: £ = 48 inches, h =

3.75 inches, t = 1.5 inches, s = 44 inches, W =

9.0 inches, and p = 0.5 inch. For the double-notched
stringers: a = 9.0 inches. m = 4.5 inches, and q =

8.5 inches. For the single-notched stringers: a =

11.0 inches and m = 17.5 inches. For these geometries,
notch depth was varied in seven equal increments from
D = 1.0to 2.5 inches (¢ = 0.267 to 0.667). Models were
generated for all six property sets of table 4. Deflections
0 (at x = s/2) and 4, (at x = a) were computed at
middepth of the stringer cross sections for center-point,
two-point, and uniform loading.

Results indicated that doubling the ratio E,/E, changed
computed defiections by only 0.5 to 1.5 percent. This
negligible variation of stringer stiffness with assumed E,/E,
ratio was observed for all three E,/G,, ratios. Deflections
were more sensitive to assumed E,/G,, ratio. Computed
deflections for group G32-£12 exceeded those of group
G8-E12 by as much as 22 percent for the same notch
depth.

Young's modulus (E,) and the shear modulus (G,,) are
required as input for the FE analysis, while MOE (E) is
required in the stiffness equations. Relations between
these quantities can be derived using beam theory. Shear
deflections can be computed by Castigliano's Theorem
(Seely and Smith 1955) or by a method developed by
Orosz (1970). | derived the following relations:

E .
) E, 8
1A @
Gy
where \ 1.2 h?/s? for center-point loading. \ 2.4 h?¥/

(3s?  4a? for two-point loading, and A - 0.96 h?/s? for

uniform loading
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Fromy the FE roswts, ha stiftness oguatons Vi
equaton (8), FE , and n, values weic compute. o G
three E/G,, ratios. In all, 126 coefiic.ents were oo
17 notch depths x 3 property sets x 3 foadiitg S a
2 getiection locations) for both singi=- and Gouo Corel
stringers. These werg compared 1o a0 O
fram the derived equations in Appandix &

Deting - as the average (absc..te. J¥aren " o
values from the FE results and the stuffness v
exprﬂs:ed as a percentage of the FE vaive. | Lo 0t
vy = 16.9 percent for the double-notched stringers ang
vy - 13.7 percent for the single-notched stringers whar
5 By setting « = 3. the diffearences were regu.ed o
~ 5.7 and 5.4 percent for double- and single-notcned
stringers respectively. Furthermore, when o = 3.+
exceeds 10 percent mainly at the extreme notch depth D
= 2.5 nches (o« - 0.667). At this depth the stiffness
equations overestimate the FE predictions by 8 to 13
percent. Hirar and Sawada (1979a) also found the stiffness
equations to overestimate measured midspan deflections
of deeply notched beams. Notches in pallet stringers are
seidom cut this deep. In figure 6 (center-point ioad), figure
7 (two-point load). and figure 8 (uniform load) this
comparison 1s made graphically for the doubie-notched
stringers with dimensions previously defined. For typical
paitet stringer notch depths, the predictions of the
st:fness equations (« = 3) and the experimentally verified
FE model show close agreement. Furthermore, the
stiffness equations are conservative for deeper notches

Rasults for i indicate that the ‘equivalent’ notch geometry
(e 3) accurately estimates defiections at points other
than midspan. Adequate prediction of deflection along the
stringer iength 1s required in a structural mode! of a pallet
strirger Figures 6-8 indicate that paliet stringers can be
rehadly and simply modeled with rectangular and tapered
bear: elements. The model can be further simphfied by
modeing the tapered elements with uniform elements of
reduced stiffness (Kosko 1982)

I found the actual values of -« that minimized y were

" 22 (~ 3.5 pct) and 20 (4 2.9 pcy) for
double- and single-notched stringers. respectively. Using
thesa values. the fit is improved for the extreme notch
depth of D - 2.5 nches (» - 0.667) at the expense of
worsening the fit at smaller notch depths which are
common for pallet stringers Thus. taking « - 315
recommended Pallet notches are substantially wider than
the notches tested by Hirai and Sawada (1979a. 19799
Also the range of .» considered in this paper 1s highar than
the one considered by the two authors. Numerical results
indicate that the best value for « depends on the range of
- considered. These reasons may explain why «» - 31s
more surtable for notched pallet stringers than the value
« 5 found for other notched beams.

Chifreae
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Jimensoness Noich Depth ¢:=D/h

Dimensicniess

Figure 6 — Stiffness coefticients .. and ', versus
» for double-notched stringers under center-point
load Dimensions (see fig. 2): ¢ 48 inches, h
375.nches, ¢ - 1.5inches, s - 44.inches. W 3
inches. @ -~ 9inches, m - $5inches. and q

8.5 inches. (ML84 5501}
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As mentioned previously, computed FE deflections were
sensitive to assumed E,/G,, ratio. Computed FE y, values,
however, show little dependence on this ratio (figs. 6-8)
due to the adjustment of MOE by equation (8). The
stiffness equations thus appear adequate to model wood
stringers with E,/G,, ratios ranging from 8 to 32.

T

Fillet Stresses

The hybrid fillet element (Gerhardt 1984) directly computes \{
the hoop stress along the fillet, ,. The hoop stress can be R
readily resolved into stress components:

(1) along the grain (g,).
(2) perpendicular to the grain (s,). and 1
{3) shear (r,,) by

I S S S Y S O S S S g, = a, Sin3f
' S 7, = a0, COS? 9
Dimensionless Notch Depth ¢ = D/h T = 0, SiNBCOSH

Dimensioniess Stiffness Coeﬂiciems%p ond \pm
T

q for » for double-notched stringers under uniform hoop stress distribution along the fillet is shown in figure 9 o 4
load. Dimensions (see fig. 2): & = 48 inches. h = for a stringer (8 = 48in.,h = 3.75in.. t = 1.50 in.) with a S
3.75 inches. t = 1.5 inches, s = d4d inches, W = 9 center notch (fig. 1, W = 9.0in., D = 1.5in., p = 0.50in.) o
' g’g”‘;s'nz _(zl’;ihggb;" = 4.5inches. and q = loaded in quarter-point bending (s = 44 in., a2 = 11 in.).
.. 2 inenes ) Results are presented for all six property ratios (table 4).
For this loading condition, the filiet region is loaded in
’ pure bending. Stress results are presented in K
z + ) dimensionless form ¢,{(6M/th?) where M is the resultant L
Y bending moment at the stringer cross section containing . j
e [:\ the fillet (§ = 90° in fig. 5). T
: R

p

b

’ ]
L Figure 8.—Stiffness coefficients 4, and y 5o versus The variable 6 is the fillet angle shown in figure 5. The -

3

5

i
T

T O / - The complexity of the stress distribution along the fillet is
¢ o N evident in figure 9. The magnitude of the maximum hoop
e : /’;;" stress, o, depends on the assumed elastic property :
T T ot ,//// ¥ ratios. Computed ¢, iS 44 percent greater for property ®
4 / ,/ set G32-E24 compared to set G8-E6. The locations of
7/ maximum ¢, and r,, along the fillet are distinct. in general, L
/

L]

both differ from the location of o,.,,. Furthermore, both

; location and magnitude of maximum ¢, and r,, depend on B
/ elastic property ratios, loading conditions, notch depth, o
Tl and fillet radii. :

\
"\

"

Dimensioniess Hoop Stress Ug/(GM/'hz)

a

|

" J J y ‘ In principle, equations for stringer strength cou!d be

: T derived by combining the stress distributions of figure 9,

Fillet Angle 6 equation (9), and an interaction equation such as the one
Figure 9.—Dimensionless hoop stress versus fillet proposed by Norris (1962). The complexities cited in the
angle for all six property sets. (ML84 5504) previous paragraph, however, do not allow derivation of
simple design equations by this approach. Fortunately, a

suitable equation can be derived using only .., as will be

q shown later. _ e -

Lt i e ity e

Maximum Hoop Stress as a Function of Notch Depth

Maximum hoop stress was computed for all the double- :
and single-notched FE stringer models described in the .
stifftness section. For these models, filiet radii was fixed at

p = 0.50 inch. Two significant findings greatly simplified

interpretation of the numerical results. -

10 L
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Dimensionless  Functions f, and f3

Dimensionless Notch Depth ¢ = D/h
Figure 10.—Dimensionless functions f, and f,

versus o for property set G16-E12 (see eq. (10)).
(ML84 5496)

()

v

) (b)

fillet on nght
side of notch

fitiet on ieft
s de of notch

Figure 11 —Positive sign conventions for resultant
benaing moment (M) and shear force (V] at the
stringer cross section containing the fillet.

(AL 84 5508)

(1) For ali loading conditions »_,, could be approximated
by an equation of the form

- (BM/th?) () ~ (BV/th) t(0) (10
where

24

f.(x) and f,{») are dimensionless functions of ¢ to be
determined M and V are defined as the resultant bending
moment and shear force. respectively, at the stringer
cross section containing the top of the fillet (at # = 90° in
fig 5). M and V can be easily determined for any loading
condition from shear and bending moment diagrams
(Byars and Snyder 1975).

(2) Computed »+.,, for single- and double-notched stringers
differ by ltess than 0.6 percent if M. V, and ¢ are the same
for both cases. For the geometries examined, the
presence of a second notch negligibly increased fillet
stress
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These two findings allow o,,, to be estimated for both
single- and double-notched stringers under any loading
condition once the functions f,(¢) and f,(¢) are determined.

The dependence of f, and f, on ¢ is indicated by the
symbols in figure 10 for the property set G16-E12. |
discovered that these tendencies can be approximated by
the simple functions 1/(A¢ + B) for f,(¢) and (C¢ + F) for
f.(¢), where A, B, C, and F depend on assumed elastic
property ratio. These coefficients were determined from
least square fits to the FE results and are presented in
table 5 for all six property ratios. The two functions are
plotted as lines in figure 10. The derived equation for a,,,
now takes the form

omee = (BM/th3)[1/(A¢ + B)] + (BV/th)Co + F) (11

where 0.267 < ¢ < 0.667. The positive directions for M
ang V are both defined as to generate tensile fillet
stresses. The positive sign conventions are illustrated in
figure 11 for the two possible fillet orientations. Some care
should be exercised in assigning the sign for V. Resultant
shear forces in directions opposite to those shown in
figure 11 will reduce o.,.. This effect will be seen later in
the experimental results.

To examine the amount of error introduced by the closed
form expression, predictions from equation (11) were
compared to FE results. For each notch depth in each
material set, a.,, was computed for six combinations of M
and V (three different loading conditions for both single-
and double-notched stringer FE models). Since 7 depths
and 6 material sets were considered, 252 FE calculated
Omex WETe compared to equation (11). | found the
difference (absolute) between equation (11) and FE
calculations to be less than 5 percent (pct of FE o,
value) for all notch depths except D = 2.5 inches

(¢ = 0.667). For this extreme notch depth, equation (11)
predictions exceed FE calculations by 12 to 15 percent.
For all 252 comparisons, the mean absolute difference
was 3.96 percent. Thus, equation (11) and table 5 reduce
an enormous amount of FE calculations to a simple but
accurate form.

Table 5.—Coefficients for equation (11)°

A A B e Jnan 4 on B A Jhee - A Abiie A “han Yt S
‘ -

Material

property set A B Cc F A/B
G8-E6 -0.4148 0.3279 1.751 05218 -1.265
G8-E12 -.3868 .3064 2.330 5150 —1.262
G16-E12 3494 2766 2815 8485 —1.263
G16-E24 -.3281 .2604 3.449 8535 -1.260
G32-E12 2973 2351 4.525 1.322 ~1.265
G32-E24 2872 2277 4.981 1.297 -1.261
' For notches with fillet radit of _0.50 n.
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Maximu Hocp Stess as a Function of Fillet Radius
The capenzency Gf 7y, OF fillet radu » IS examined in
'ab:e 6 ‘ﬁr It r.u aenth D = 1.5.inches and preperty
set g1l £301i5 are far woading with pure bending at
L'ws range Ct p represents the extremes
d fliet radius (NWPCA 1982). As expected,
MaxiMur S0 SesE INCTeases as the ‘illet radius
ceTresee Trg oo anu e 2f s change s fainy smali

7 and 0 5 nch difer from the
075 renrenas oy cmiy 15 percent and

resyeCti gy

Sesyte car o ot
-8 percent,

Zaw urzsemisC i e following section indicate that

. Tetwes: 3~ and 1.0 inch does not significantly
ar'ac’ '-fe"q n 2t green cak stringers. Thus, for the

cr 25 OF s study, Zeterminiation cf the functional
Wy, oothe ceeff.eients o table 5 on p s not
"eCurRe. The depandecay. bowever, can be readily

Cetermrnest ron addionai FE modeling if required.

'.r

“abie 6. Eﬂec‘ o? fillet radu on maxlmum hoop stress’

o,_,,(GM/th‘)
950 7.53
275 657
' oe 6.02

NN tante T A pr JL/ﬂ'YV set G16 E12 msuhant shear
foromoar et Y G

Experimentai results from tests of green oak pallet
stringers are presented in this section. These results are
compared with both FE calculations and the derived
stiffness equations. An equation is derived to estimate
stringer strength as a function of notch depth.

Material Properties

After mechanical testing, the measured moisture content
(MC) of all stringers was above fiber saturation. The
minimum MC was 42 percent, and mean MC for each of
the 20 groups ranged from 58 to 68 percent.

MOE and MOR values were determined for the 3
unrotched groups of 30 stringers each. Mean, standard
deviation (SD). coefficient of variation (COV), and 5th
percentle vaiues are presented in table 7. Ranges
publshed in the Wood Handbook (USDA 1974) for smail,
clear specimens of green red oak are 1.18 to 1.79 million
Ib/in2 for MOE, and 6,900 to 10,800 Ib/in.2 for MOR. The
values in table 7 fall into these ranges, but at the low end
for MOE

Single-Notched Stringers

The effects of notch depth, fillet radius, and loading
cond'ticn on stringer stiffness and strength were examined
2y testing stringers with a single notch (fig. 1).

Stiffness

Deflecticns 4, (at x = s/2) and 4, (at x = s/4) were
measur¢d for each stringer under a small load. MOE was
computed for each board using & and equation (5a) or
{6a) with .« = 3. In table 8 computed values are presented
for stringer groups containing different notch depths (the
first eight groups). If the stiffness equations reliably
esttmate the effect of notch depth, computed MOE will be
incependent of notch depth.

Consider tirst mean MOE values for stringer groups with
notch depths of D = 1.0, 1.5, and 1.875 inches (see

tabie 1) Analysis of variance indicated that the hypothesis
ot eqgual means could not be rejected since p = 0.38 for
the three center-point loaded groups and p = 0.11 for the
three quarter-point loaded groups.? The difference
between the highest and lowest means is only 8 percent
for the three center-point groups and 14 percent for the
three quarter-point groups. This compares with
differences of 11 and 19 percent, respectively, when « is
*aken as 5 in the stiffness equations. As indicated
previcusly in comparison of FE results and the derived
stiffness equations, use of « = 3 more reliably predicts
stringer stiffness. Mean MOE values for the six groups,
however, exceed unnotched MOE values by 11 to

28 percent. As mentioned before, the notched stringer
groups contained a greater percentage of clear wood than
the unnotched groups.

The p value 1s defined as the probability that if the hypothests (equal
mearsi s trua the given (or iarger) difference of means wili be observed
Vaiues uf ) 18ss than 0 05 for instance. wouid imply that the difference in
means s statistically significant at the 5 percent ievel
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& Tatte 7.—Properties of unnotchie @ stringers’ 1
» ‘Aaqulus of elastinity Modulus of rupture
9 G.oup e IR R .- — e -
L identitication 3tk Standard Coefficient 5th Standard Coefticient
b Mear percentile deviauon of vanation Mean percentile deviation of vanation
s - - e - - —_—— = e - i
e Rt LR EEE T A G0N D40 S e B0 e J 2N R e e -
M-G-d 20 380 j9.2 7.260 4350 1475 ey . @
C-C-i 1.2a 0 200 3.730 5.500 1,980 227 ]
C-C-2 1y 397 21.6 8,240 5.83C 1,350 ‘04 Ky
* Camensicns and foading condions avan i able ?;;7307 <tr:w€| s - _-‘:'~j
ey
l. "‘
Table 8.—Stiffness results for single-notoned stringers' (tig. 1) - ° 1
G Moduwuds of alasticitys REXP4 RFE® ]BT* ABT.REXF . b
roup g T e e e R -
identification Sth Stangard  Coefficie 1t ‘2 Coefficient Coefficient
Mean percentiie  aeviation of variagticn aean o vanation Mean Mean ot vanation
-------------- Miton ib/in.2 ~et ~ct ‘et
C-b-1 30 137 0644 ‘9.4 155 4.1 161 158 02 42
C-D-2 30 138 728 240 s 28 166 163 $ 02 'z .
C-D-3 30 148 - 670 258 1.66 26 1.69 167 1ot b o
C-D-4 28 1.60 .866 234 173 18 174 171 ag 1T 1
M-D-1 29 134 863 291 217 * 43 47 148 i L 06 43 .
M-D-2 29 147 778 250 23.8 151 27 156 1.57 *0s e
M-D-3 29 153 .78 266 239 161 28 1.62 162 101 3 )
M-D-4 29 171 1.097 1339 19.8 1.69 as 170 ! "0 43 ]
M-R-1 30 152 1.125 237 15.6 1.48 34 1.56 1.57 107 35
M-R-2 30 148 1.111 .237 16.0 148 25 157 187 * 08 25 [ ]
M-R-3 30 1.40 767 302 21.6 1.51 29 157 157 04 28 ’
M-R-0 30 138 714 .295 21.4 1.50 32 - 158 105 32 1
M-S-1 30 147 944 279 19.0 146 39 - - - -~ R
M-S-2 30 135 931 207 15.3 1.45 7 - - - - . 1

' Dimensions and loading conditions given in table 1.

2 Sampie size.

8 Modulus ot elasticity computed from equation (5a) or (6a) and measured 4,. where 4, 1s the midspan deflecton (at x

<i2)

* Expenmentally measured 5,/5,. where i 1s the stringer deflection at x =

s/4

* FE computed 3,/3, using mean geometry for each group and property set G16-E12

¢ Computed 4./’ using derived stiffness equations with gecmetry of each stringer

MOE means for grcups C-D-4 and M-D-4 (notch depths ot
D  25.nches or ¢ - 0.667) are higher than those of the
three associated groups with shallower notches. Trnis can
be attnbuted te the overestimaton of 5 for extremely ceep
neiches (o 0 6Ci. The overestimation was discussed
eartier ancg s 'lius'rated in figures 6-8 for double-notched
strircers Pahet stringers. however, are not normally
notched this deeply.

MOE vaiues vary substantiaily 1n a given group as
wvicenced by tre SO anc CCV results in tatie 8 This
sariaton makes sompanson of meosured deflect ns with
FE rocs0s and stffiness eguations rather difficult since a
partizuar MOE s required to obtam enther theoretical
reselt By comside ng the 1atio oufs,, Nowkser this

aifficulty can be overceme The ratic s msensitive 0 MO J
for stringers with constant MGt along the <t nger anc

the ratic 1s indepengent ¢f MOF Therefcre Jetine thren

helty ratios o
11, REXP-expernmertally maasirac . 2
(2) RBT-calculated trom stitfneas pquatiens tha) (5t N
{6b1 for each stringer. ana ‘ \
13) RFE-calculated trom FF ~der ssirs mear stringer r
amensions for eacr groun )
TTha FE gl athern aAcra e a0t Yy Gt + 1 S [ - -.
wete wett othar £ 0 catr ch madtraca L ng L, iy 1 g y e -
AVerage
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REXP and RBT were compared for each stringer by
computing the ratio RBT/REXP.

The following results were found by comparing the
various d,/d, ratios (see table 8). For each group:

(1) REXP had low COV values (1.8 to 4.7 pct) indicating
the relative independence of 4,/6, on stringer MOE.

(2) RFE means differed from REXP means by only 0.6 to
3.5 percent indicating that the FE model accurately
predicts stringer deflection. (This is also shown in App. A)

(3) RBT/REXP means range from 0.99 to 1.06 with COV of
1.7 to 4.5 percent indicating good agreement between the
stiffness equations and the experimental measurements.

In summary. experimental results from full-size stringers
indicate that the derived stiffness equations (« = 3)
reliably estimate beam deflections for both loading
conditions when ¢ - 0.60. Computed MOE values
indicate that 4, ts reliably predicted. Consideration of the
ratio se/i Indicates that deflection a4 is reliably predicted.
For extremely deep notches {4 :» 0.60), the stiffness
equations will calculate excessive deflections.

Computed MOE is affected little by fillet radius (table 8) as
expected. Mean values ranged from 1.38 to 1.52 million
Ib/in.2. Sits cut in groups M-S-1 and M-S-2 did not
appreciably change MOE. Analysis of variance was done
on MOE values for the last six groups in table 8 and
group M-D-2 {same geometry as M-R-1 but cut on an
industrial notcher). The hypothesis of equal means could
not be rejected (p = 0.18).

Strength

The amount the ultimate load, P,, exceeded the load at
which the crack initiated at the fillet, P, was highly
varniable. For some stringers, knots caused cracks to
propagate to an edge and P, exceeded P, only slightly. In
more straight-grained stringers, the cracks propagated
toward the stringer ends and stopped. These stringers did
not break but experienced large deflection with decreasing
load. For this type of failure mode, P, was substantially
greater than P.. For a few cases, the difference was close
to a factor of 2.

14

From measured P, and P, resultant bending moments M,
(crack initiation load) and M, (ultimate load) were
calculated at the stringer cross section containing the fillet
(at 6 = 90° in fig. 5). Define normalized crack initiation
and ultimate moments by M} = M/(th?/6) and M = M,/
(th?/6), respectively. Dividing the moments by the section
modulus of the unnotched portion of the stringers allows
the moment capacity to be compared directly with the
MOR results in table 7. Results for all 14 groups are
presented in table 9. For a few stringers P, could not be
identified from the load deflection curve. M, for these
stringers was not included in the analysis, which explains
the difference in sample size between crack initiation (n)
and ultimate (n,) moments.

Effect of fillet radius.—Results indicate that varying the
fillet radius p (1/2, 3/4, and 1 in.) had negligible effect on
both mean M; (2,500, 2,640, and 2,590 Ib/in.2) and mean
M: (3,250, 3,110, and 3,010 Ib/in.?). The independence of
fillet radius on crack initiation moment was somewhat
unexpected since fillet stress does decrease as p
increases (table 6). Apparently the magnitude of the stress
decrease was insufficient to affect the crack initiation
moment. Leicester (1974) also found the strength of slit-
notched beams to be somewhat independent of notch root
radii.

The group containing stringers with notches with sharp
corners and no fillets (M-R-0) had mean values of M =
1,960 Ib/in.2 and M = 2,730 Ib/in.2. These are
approximately 24 and 12 percent less than the filleted
groups. In comparing the unfilleted group to the filleted
groups. the means could not be considered statistically
equal for M7(p < 0.0001) but could be considered
statistically equal for M at the 5§ percent level (p = 0.13).
However, comparing the 5th percentile values for M, the
filleted groups exceed the unfilleted group by 17, 69, and
97 percent. The fillet apparently does have a beneficial
effect on notched stringer performance, although all fillet
radii between 0.5 and 1.0 inch yielded the same strength
results in this study.
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Table 9.—Critical normalized bending moments for single-notched stringers* (fig. 1)

M 26 B a2 B - Ad - S fl A Andl Gadl Sedh Ml s Sl g _——

M'-l M;! ¢l
Group n T e - — “« T e o e
identification " Mean S5th Stangrd Coefficient “  Mean 5th Standard Coem'cngm Mean
percentile deviation of variation percentile deviation of variation
------- Lb/in? Pct sevmesmnmnmnon e [ DI 2 e e Pct
C-D-1 29 3.430 1.790 681 199 30 4.040 2.690 747 18.5 0.266
C-D-2 26 2.410 1.560 440 18.3 30 2,710 1,620 562 207 394
C-D-3 29 1610 764 316 19.6 30 1,860 1.050 371 199 508
C-D-4 25 800 454 152 19.0 28 903 592 169 187 650
M-D-1 30 3.080 1.620 697 22.6 30 4,120 1,930 1,200 291 269
M-D-2 30 2.340 1.260 490 209 30 2,990 1.600 898 300 .387
M-D-3 29 1.640 1.300 233 14.2 29 2.083 1,330 489 235 504
M-D-4 30 885 678 138 15.6 30 1,010 719 266 26.3 647
M-R-1 30 2.500 1.490 619 248 30 3.250 1.960 820 25.2 384
M-R-2 29 2,640 1.900 372 141 30 3.110 2.290 501 16.1 387
M-R-3 29 2,590 1.320 568 219 30 3.010 1.360 733 24 4 393
M-R-0 30 1,960 1130 398 20.3 30 2,730 1.160 725 26.6 402
M-S-1 30 2110 1.190 436 20.7 30 3.230 1,690 815 252 391
M-S-2 30 1,930 1.180 433 224 30 3.150 1.470 904 287 394

' Dimensions and loading conditions given in table 1.

2 Sample size for crack initiation moments.

P M - BM/th? where M 1s the resultant bending moment at the stringer cross section containing the top of the fillet (# = 90 in fig. 5): M,

1S M at the load the crack initiates.
¢ Sample size for ulttmate moments.
5 M. = 6M,/thz: M, is M at the uitimate load.

s [ D/h

Effect of notch depth.—In figures 12 to 15. M’ and M} are
plotted versus dimensionless notch depth ¢ for all
stringers in the first eight groups of table 9. The quarter-
point and center-point loaded groups are presented in
figures 12 and 13 and in figures 14 and 15. respectively.
The vaniation of « (D/h) in a given group is caused by
variation in stringer height (h). not in notch depth (D). The
two experimental ines 1in each figure are the regression
hne fitted using weighted least squares (Chatterjee and
Price 1977). and the line for which 5 percent of the
observations should lie below, If the errors are assumed
to come from a normal distribution.

in contrast to the effect of fillet radius. figures 12 to 15
indicate that the moment capacity is strongly dependent
on notch depth. In what follows. an equation that predicts
mean M’ as a function of ¢ is derived from the FE results.
The FE model cannot directly predict ultimate moment
trends since a variety of tailure modes can occur after
crack imtiation. The derived equation, however. will be
modified to approximate 5th percentile estimates for both
M* and M:. Design procedures for wood members are
usually based on 5th percentile strength values.

First consider the four stringer groups loaded in quarter-
point bending (figs. 12.13). These stringers have the notch
region subjected to pure bending (V - 0). For this special
case, equation (11) can be simplified to the form

6M A
th? - Bﬂmll (B(b + 1) (12)

where 0.267 < ¢ < 0.667. Surprisingly, the ratio A/B is
independent of assumed elastic property ratio as indicated
in table 5. The ratio can be set equal to —1.26 with little
error. Thus, equation (12) can be simplified to

6M
th? = K(-1.26¢ + 1) (13)

where 0.267 < ¢ < 0.667 and K = Ba,,,. Equation (13)
can predict mean M as a function of ¢ by appropriately
determining K. Define K, as the value of K associated with
crack_initiation at the fillet, that is, at a particular value of
T K, Can be obtained using mean values from any of
the four quarter-point loaded groups. | chose group M-D-2
which has mean M = 2,340 Ib/in.2 and mean ¢ = 0.387.
Solving equation (13), one obtains K = K, = 4,570 Ibfin.2.
Mean values from groups M-D-1, M-D-3, and M-D-4
compute K, values that differ from this result by only 2.0,
—1.7. and 4.8 percent, respectively. Thus, as predicted by
the theory, K, is independent of ¢.
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Figure 12.—Normalized crack initiation bending
moments (M) versus ¢ for quarter-point loaded
groups M-D-1, M-D-2, M-D-3, and M-D-4.
(ML84 5497)
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Figure 13.—~Normalized ultimate bending moments
{M,) versus ¢ for quarter-point loaded groups
M-D-1, M-D-2, M-D-3, and M-D-4. (ML 84 5498)

Equation (13) is plotted in figure 12 with K = K, =

4,570 Ib/in?. The agreement of equation (13) with the
regression line is excelient. The linear, elastic FE resuits
correctly predict the slope of the line, i.e. the effect of
notch depth on mean crack initiation moment. Note that a
theory based on reduced section at the notch would
predict that moment capacity is proportional to (1 — ¢).
The linear relation of equation (13) indicates that M, is in
fact related to strass concentration at the fillet and not a
reduced section theory.
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Figure 14.—Normalized crack initiation bending
moments (M) versus ¢ for center-point loaded
groups C-D-1, C-D-2, C-D-3, and C-D-4.
(ML84 5499)
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Figure 15.—Normalized ultimate bending moments
(M.) versus ¢ for center-point loaded groups
C-D-1, C-D-2, C-D-3, and C-D-4. (ML84 5500)

The discovery that the ratio A/B is independent ot
assumed elastic properties suggests that equation (13)
can predict mean trends for other wood species. (K, must
be determined at one notch depth.) This hypothesis,
however, must be experimentally confirmed before

applying.

Equation (13) can be extended to handle any stringer
loading condition as follows. Equation (11) can be now
written as

SM[ 1

_ 6 NN B )4
K = he ] + 7, [CBo + FB (14)
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where 0 267 - 0667 Factors CB and FB vary
somewnhat with efastic property ratio (see table 5). The
particular values chosen for CB and FB will not
signthcantly change equation (14) since the moment term
's much larger than the shear term | used values from
property set G32-E24. These wiil give the most
conservative calculation of M when V 1s positive. (For
double-notched stringers under most loading conditions, V
will be positive ) EqQuation (14) can now be written

&M K
tn? 1
1260 - 1

1
. \:‘;‘(1 130 + 0.30) (15)

where 0267 < » = 0.667. Equation (15) clearly reduces
to equation (13) when V = 0.

For any loading condition. the ratio V/M is known For the
four center-point loaded groups. V P/2 (see sign
convention, iig. 11yand M - P/2 x (22 4) Therefore V/IM
1718 (in. ). Thus relationship i1s valid at both crack
inittation and ultimate loads. To use equation (15) to
predict mean M simply set K - K - 4.570 ipfin.2 Since
K 1s related to a cntcal value of hllet stress. it i1s not
dependent on stringer ioading condition. Therefore, the
value obtained from guarter-point loaded stringers I1s
applicable. Equation (15) 1s piotted in figure 14 using K -
K and a mean value for h of 3.78 inches The agreement
ot the experimental regression line with equation (15) 1s
quite good. Note that none of the data from center-point
ioading were used 1n constructing the theoretical line

For this loading condition the resultant shear at the tllet
reduces the maximum hoop stress (see eq. (11))
Comparing figure 14 with figure 12 indicates that both
expenment and theory predict that the resultant shear
increases the moment capacity.

By appropriately selecting K. equation (15) can also
refiably calculate 5th percentile trends for both M* and M
Equation i15) 1s plotted on hgures 12 and 13 (V/M 0)
and figures 14 and 15 (V'M 118 1n ") using K Ko™
3.040 b/in 2 for crack iniiation moment (figs. 12.14) anad
K K 3340 ib/in.? for uitimate moment (figs 13. 15)
Agreement of these lines with regression hnes s
excellent

In summary. a theoreticat equation based on FE
calculations was derived to predict mean crack mitiation
moment as a function of notch depth. The equation is
based on the maximum filiet stress without reqard to
interaction of stresses such as tension perpendicular to
grain and shear Agreement of theoretical equation with
expermental results was excellent for two lvading
conditions. By adjusting the value of K in equation (15)
Sth percentiie trends were accurately modeled for both M*
and M’ The load associated with a calculated critical
bending moment can be readily obrained for any loading
condition from the stringer bending moment diagrar:
{Byars and Snyder 1975)

Effects of slits and cutting technique.—Tne sits cut at
the fillet reduced mean M’ by 10 and 18 percent (for two
slit lengths) as compared to group M-D-2 Mean uttimate
moments showed little difference as indicated in table 9
This result cannot be generalized to the problem of a
crack at the fillet Cracks imtiated at the fillet from pailet
nating or stringer drying will be sharper than shts cut by a
bandsaw. The eftect of such cracks may be much more
severe, therefore, additional research 1s required to
resolve this issue.

The two cutting methods can be compared from resuits of
groups M-R-1 and M-D-2. Stringers with notches cut at
FPL (M-R-1) had higher strength values than stringers
notched on the industrial equipment (M-D-2). Means were
higher by 6.8 percent (M") and 8.7 percent (M;). while 5th
percentiles were higher by 18.3 percent (M) and 22.5
percent (M;). The differences found, especially at the 5th
percentile level. indicate that the effect of cutting
techmque on stringer strength may be another area that
warrants further research.

Double-Notched Stringers

Equations that predict stringer stiffness and strength were
previously derived. In this section the equations are
compared with test results from three groups of double-
notched stringers.

Stiffness

Stiffness results for double-notched stringers are
presented in table 10. MOE was computed for each board
using &, and equation (2a) or (3a) with « — 3. Mean MOE
values for the three groups are 152, 1.45, and 1 28 million
Ib/in2. These means are similar to those found for single-
notched stringers with notch depths of D -~ 1.0. 1.5 and
1.875 inches (see table 8). The deflection ratios in table 10
are defined as before except that 4, 1s measured at x -

m + 45 (see table 2 for m). The FE ratios (RFE) differ
from the mean experimental ratios (REXP) by only 0 8.
1.3, and 4.0 percent. The agreement of the experimental
ratios with the stiffness equation ratios (RBT) is also quite
good since mean RBT/REXP values range from 0 97 to
1.05 Note that REXP increased from 149 to 172 as the
span changed from 44 to 40 inches This increase was
accurately predicted by both the FE results and the
stiffness equations
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Table 10.—Stifiness results for double-notched stringers’ (fig. 2) ’ ]

|
! i

o
L.

. T Modulus of elasticity? REXP* RFES RBT 'RBT/REXP ]
roup n - , - B e '
identification Sth Standard Coefficient Coefficient Coefflicient C
- Mean percentile deviation of variation Mean of variation Mean Mean of variation R
-------------- Million ID/in.2e-eeceeneae=  Pet Pct Pct Lo d
M-T-1 30 1.52 1.012 0.264 174 1.30 43 1.31 1.36 1.05 42 e
n C-T-1 30 145  1.069 191 17.9 1.49 40 147 147 99 4 O
o C-T-2 30 1.28 .736 .263 205 1.72 6.3 1.65 1.65 97 6.2 - ._-i_-‘
p .- - A
X ' Dimensions and loading conditions given in table 2. ‘.~_
L'~ # Sample size. ot j

3 Modulus ot elasticity computed from equation (2a) or (3a) and measured 6., where &, is the midspan deflection (at x = s/2). ®

¢ Experimentally measured *5/5q. where 4, is the stringer deflection at x = m - 4.5 (see table 2 for m).

* FE computed 45/45 using mean gaometry for each group and property set G16-E12.

¢ Computed 4,/4q using derived stiffness equations with geometry of each stringer.

rv—niv‘

, @ @ ;
- Table 11.—Normalized crack initiation moments for double-notched stringers® (fig. 2)
a My ¢ h Computed* M .
" ot e 5th Standard Coefficient o T T o
: identification ! andar oefficien .
Mean percentile  deviation of variation Mean Mean Mean percentile .
..................... LD/INZ e Pct n. Lb/in? Lb/in? °
{ M.T-1 28 2.460 1.410 472 19.2 0.383 375 2.360 1.570 R
X CT 29 2,100 1540 298 142 379 3.74 2.150 1,430 _'-:-',1
" C-T-2 30 1.870 1.140 429 229 381 374 2.100 1.400 S
4 I ) _ o e bl Y -
i ' D.mensions and Inading conditions given in table 2. -
2 Sample size .
) .9
*M® 6M/th? where M 1s the resultant bending moment at the stringer cross sections containing the fillets closest to midspan; M. 1s M T
at the load the crack initiates A
" 1
* Computed trom equation {15) with K = K, - 4,570 Ib/in2 for the mean values and with K K5 3,040 ib/in 2 for the 5th percentile 4
values : 1
1 4
b - — 3
L | ]
g e
Table 12. —Normalized ultimate moments for double-notched stringers' (fig. 2) I
- M2 o Computed* M; S
p . Group 2 - - — e - . - - - G S
- identification ., Mean 5th Standard Coefticient 5th o
2 percentile deviation of variation percentile o
b - - - - -
e B R ERRRAR W o741 ILELELLEE e Pct Lbin? ® !
] M-T 1 30 3.070 1.890 777 253 1.730 - <
C-T-1 30 2230 1.320 447 200 1.570
c.12 30 2 000 1.210 451 226 1.540
- * D¢ ensiors ana 'oading condihions given in table 2 »
I Sample size }
L] o
YW AM the whare M s the resultant bending momant at the stringer cross sections containing the fillets closest to midspan, M, 1s M 1
s At the e gte 140 E :
b -
b . CCompatag from enLatinn 5 with K Ko 3340 ipjin? I
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Strength

Experimental results are presented in table 11 for crack
inlation moments and in table 12 for ultimate moments.
The bending moments are computed at the fillets nearest
midspan. Cracks always initiated at one of these two fillets
because they were subjected to much higher bending
moments than the fillets closest to the supports. Equation
(15) was used to calculate mean M’ (K = 4,570 Ib/in.?)
and 5th percentile values for M’ (K = 3,040 Ib/in.?) and M?
(K 3.340 ib/in.3). The appropriate values for V/M are 0
(M-T-1), 13in. "{C-T-1), and 11 in. ' (C-T-2). The
predicted mean M’ values differ from the experimental
values by only 4.0, 2.4. and 12.3 percent. The theory thus
reliably predicts mean crack initiation moments for double-
notched stringers. The center-point loading resuited in
positive resultant shear forces at the fillets nearest
midspan. These forces increased fillet stresses and
reduced moment capacity as compared to the two-point
loaded group. This reduction was predicted by both theory
and experiment.

The differences betwesn experimental and predicted 5th
percentite values were 11, 7, and 23 percent for M" and 8,
19, and 27 percent for M;. Differences of this magnitude
are quite acceptable since the sample sizes (about 30
stringers/group) are small. Fifth percentile regression lines
for single-notched groups were Lased on about 120 data
points. Although the agreement pstween equation (15) and
these lines was excellent, the magnitude of differences
between experimental and predicted 5th percentile values
for individual groups were similar to those found for
double-notched stringers.

Effect of Span

Results from group C-T-2 examine the effect of reducing
span on stringer stiffness and strength. The span of
notched stringers is somewhat adjustable since pallets are
often supported across the stringers in warehouse racks.
Stffness changes are examined in table 13 as the span is
reduced from 44 inches to 42 and then to 40 inches.
Calcutations were made using stiffness equations (2a) and
(4a) with « = 3. The reductions in center deflection are
based on percent of the value when s = 44 inches.
Based on beam theory. reductions for unnotched beams
would be 13 percent (s = 42 in.) and 24.9 percent (s =
40 n)).

Table 13.—Eftect of span on center deflection of double-
notched stringers' (fig. 2)

Reduction in center defiection®

C P i N P i e el -—T

D ¢ Center-point load Uniform I(A:;ér
8=42inch s=40inch $=42inch s-:40inch
N, eeeeeeeeeens Pct------ Pct
1.00 0.267 14.7 279 19.5 320
1.25 .333 15.2 28.8 21.4 340
1.50 .400 15.7 297 23.1 359
1.75 467 16.1 30.5 247 376
2.00 .533 16.6 313 26.0 39.1

' Dimensions: h = 3.75in.,q = 85mn.. W = 9.0in.
2 = D/h.

3 As compared to span of s = 44 in.

For center-point loading, reducing span actually decreases
moment capacity at the fillet as indicated by experimental
and theoretical results in tables 11 and 12. This reduction
is caused by an increased shear contribution (higher V/M
ratio) to fillet stresses. Although the moment capacity at
the filiet decreases, the load carrying capacity of the
stringer does increase as span is reduced. The increased
load capacity is caused by altered relationships between
load and fillet bending moment. Load capacity changes
can be easily calculated from equation (15) and stringer
bending moment diagram. | found that decreasing the
span from 44 inches to 42 and then to 40 inches
increased load capacity by 7.5 and 16 percent for center-
point loading and by 6.8 and 15 percent for uniform
loading.
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Conclusions

Tne conclusions from this study of notched. green oak
pallet stringers are presented separately for stringer
stfiress and strength For stringer stiffness:

1) Resuits from a FE structural mode! show excellent
agreement with expenimental results from both full-size
and small-scale (see fig. A1) notched pallet stringers.
(2) Results from derived stiffness equations (2-7) agree
well with FE results for notch depths associated with
paliet stringers. The stffness equations are based on a
structural model that utihzes rectangular and tapered
beam elements with an equivaient’ notch geometry.

(3) Results from tests of full-size notched stringers
indicate the derived stffness equations (2-7) accurately
predict the effect of notch depth on stringer stiffness.
(4) Experimental results indicate that stringer stiffness is
independent of fillet radir.

For stringer strength:

f1) Experimental results indicate that stringer strength is
unaffected by varying the fillet radii from 1/2 to 1 inch. A
group of stringers with sharp, rectangular notches (no
fillety did have lower strength than the filleted groups.
(2) Experimental results indicate that stringer strength is
guite sensitive to notch depth. Equation (15) predicts
moment capacity as a function of notch depth for any
loading condition. It was derived from FE stress results.
Equatior (15) predicts both mean and 5th percentile
strengths that show excellent agreement with
expernmental results

I~ summary patlet stringers can be structurally modeled
Ty otoo v deam elements of the ‘equivalent geometry
37 Tnese eiements w. ' Mmodel stringer stiffness quite
Jsng this equivalent geometry. a node
G oreltanguar ant tapered beam 2lements will
: sy bt Thys when ysed as part of a pallet
=t r e the resuitart bending moment (M) anag

3- s
AT raten,

Sean b WA D Zomputed at every stringer Cross
[RURE narenyg a thet From M anz Voand equation
= = O percentie falure 10ads ran be predicted

©oor i aeometry and paiiet loatng condition
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Appendix A—Comparison of Finite Element Resulits

With Experimental Measurements

A finite element (FE) mesh similar to figure 5 was
constructed to model a small (£ = 11.375in.,.h = 1.5,
t 0251n) single-notched (D = 0.5in. W = 251n.,p -
0.1875 in.) Sitka spruce stringer loaded in center-point
bending.* Computed and measured center displacement*
1s shown in figure A1. The agreement is excellent,
validating the FE model for stiffness computation. Strains
were also measured in the spruce stringer when oaded in
tension * Experimental and computed normal strains
compared favorably except at the fillet tip. At this location,
the finear elastic model could not predict the apparent
noniinear response.

I compared FE results with published photoelasticity
resuits to insure that the fillet element computed accurate,
iinear elastic stresses. Experimental results for a tensile-
loaded stepped bar with shouider fillets are presented in
figure 65 (Peterson 1974). The problem can be modeled
by the mesh of figure 5 with vertical symmetry imposed
a'ong the top surface. Since the formulation for the hybrid
element 's anisotropic, near isotropic properties were
used in the analysis. i.e., E/E, = 1.001, G,/E, = 0.4, v,,

025 The fillet radius (p) and notch depths (D) chosen
are shown 'n table A1. These approximate the ranges
needed in modeling the notched stringer. The mesh used
was :dentical to figure 5 with h = 4.0 inches, except that
six 12-node cubic elements were added to the left side to
insure uniform tension at the end.

Computed and experimental stress concentration factors,
K. are compared in table Al. K, is defined as maximum
fillet stress divided by nominal tensile stress in the narrow
section of bar. Computed and measured K, differ by less
than 4 5 percent for all nine cases. Varying @ by 0.5t0 1.5
tmes .. crianged computed K, by a few percent. Values
showr in table A1 agreed best with experimental results.
These scalings were used 1n the notched stringer models.

Tre nycnd element contains 13 nodes. Thus, the minimum
number of terms required in the assumed Taylor series
expans:on is 12 (Gerhardt 1984). Thus mimmum number
~3s used in the results presented in table A1. Results

tror using 13-17 terms changed K, by only tenths of a
parcent Finally, 20 gauss points were used to integrate
each side of the hyorid element (Gerhardt 1984). This level
o! quadrature resulted in stress convergence to five
c¢ecmal points. In conclusion, the photoelasticity results
ndicate that the scaling used in figures 4 and 5 will
compute rehable elastic stresses over the desired ranges
of D and 4.

Mlgeas 38 Gaerrargt T D Peterson R A Rowands R F Stiffness
ar | strars n WO DAAMS havng rectangular hliated notches In
gragarator Forast Sarvuice Forest Prod.acts Laboratary Madison, Wi
Usoa
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Table A1—Comparison of finite element (FE) and photoelasticity
results’

B D P Q Ky, Ko ger Difterence
----------------- [ Pct
200 0.50 0.50 2.330 2.26 31
2.00 75 50 2.026 1.99 1.8
2.00 1.00 75 1.835 1.84 3
1.33 .50 50 2.358 2.29 3.0
1.33 75 50 2.061 203 15
1.33 1.00 75 1.915 1.87 24
923 .50 .50 2.278 2.18 45
923 75 .50 2.004 1.96 22
923 1.00 75 1.843 1.82 13

' Results for a tensile-loaded stepped bar with shoulder fillets, i.;
fig. 5 (h = 4.0 in) with symmetry imposed along y = h and
loaded in uniform tension in the x-direction.

2Ky = 0mfT. Where o,,, = maximum stress along fillet and T =
tensile stress applied to narrow section of bar.

* Photoelasticity values estimated from fig. 65 in Peterson (1974).

LOAD (!bs)

o [xgerimenty

1 1 L )

DEFLECTION (in)

Figqure AT—Comparison of FE and experimental
midspan detlection for a small. single-notched
stringer. (ML84 5506)
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Appendix B—Definition of Dimensionless
Factors for Equations (2-7)

Dimensionless factors i, for double-notched stringers (fig 2) are defined as follows

Bind M) 12ah (2 + 32 4Buchi(d, - 5

- 12.h.C, - 48.+hiC, - 12.00'C - C,
(1) (1~ op 1 o
1 12n2a, - 8m? - 4a)  12.h.(3 -~ a)  24chia. 23) ' -4
e [ 0 ° : L ‘ ©124C. 24.hC. - 12.0C. - C, | ®
a3  4ad) o (1w R I 4 o
.t -"
! _ N -
v 28 o
1 6n.a‘ 2m? 4a’ 3oh (- a0 12,005 b
N { : i oo ( 3.h C 12.7h:C.y + 3.hC Coyl -
ai3 4a) 1 )3 (1 ) {1 ) ] X
Cia , . - . . " L
0o 15 ni4 3n) - m3y 4 - 3m) 96,0 4t IR B 192.-h- (2 - 3.0 w42 - 3. i
o UL 1 ) _ (1 ) n
i
- 96.h C, - 192.:hC,, « 96.NC,. - CJ
) 1 !ra"( 2 - a) - my{ 4 - 3my - 2nma(d 2n ) Dot it ) a0 4
T aqt 2ac - aylb (o (o r o 1
1200500 2 - 300 - oa(l - 2 1
! ) 6.h C,. - 124°hC,, - 6.°h'C, - C,J
i
Tro irarsicopess constants are defined by 'see hg 21 o D/hon (m » Wis h h:s a a’'s. m mre ‘:", ; .‘4"
AL S moand - n, - oh -1 The constants C (i 1.20) are defined in table B1 1
[
9
T marsonless factors » for single-natched stingers (fig 1) are defined as foliows: 1
N <
T8m 1200 52 48.*h?. o
o 1200 K. - 48.7h3K, - 120°h3K, - K, T
[ ) (1 D) 1 } - )
- ®
1 3 12m¢ 12.h . 24. 2" X R
N . 12,1 K.+ 2402hiK, - K,} .
3 4a‘jpL (1 K & o) (1 ) >
-
r E B
1 1 3 6m 3..h ‘ 4
- 3R K. o K e ]
codaslp ap 1 : J . e
Ts oo 4BmY 4 - 3my 96uh (1 s 192k 2 - 37 K
¥ ‘ 3m) ot : S 9BLR K, - 192.h K, - (920K KL
- 1 P (1 o 1 =] J
1 Ty v omeg 30 2m 5.h i ) 12-h? 1 2]
’ [ 2a° - ah i1 e . (1 ) (1 i i .,.
AN K .- 12‘,277.)(.5 2 KL, - K, __11‘
Tre tmensonless constants are defined by (see fig 1.5 D/hoh h/s. a a/s m nUs.ard moocn i
2 The constants K 1171 are detined in tablo B2
®
1
s
o3
® -
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Table B1—Relationships for constants C , 0 =120

Appropriate notch depth interval

", 7, 3,
€ Bt ve veft
C: 3ot Yo Yobs
5C, —4n(1 — ¢) 3 — 2en(1 ~ ¢) — 24n(8,) 3 — 20n(8;) — 20n(y)
Co 1+ 8(xi — x}) 1 — 8x? 0
Cs o8 — 32 Yoo Yo2ol}
Co —23, + a, a, a0,
C, —2in() — o) 3 — 2en(d,) 3 — 2n(s,)
Cs 3a, + 8x} — 12x%a, 3a, — 12x?a, 0
Co 31+ 3) — Y1 + v) =1 + o) =731 + vo)6}
Cio 3ol — 33.) + 7ol + 3v,) Yo(2 + 3v,) Y2 + 3vo)0,

Cu ~—4 + 6(3, — y)iEn(1 — ¢)

C. 5+ 16x}—4 + 3x) + 16x3(4 — 3x,)

Cyu 9%+ a2

Cu 3

Cis —20(1 — ¢)

C, 3a2 + 2x} — 6x.a2

Ci 3%—1 + 3) + ya(1 + 7d)

Cis 3442 — 33,) — a1 + 2v,)

Ciw 2(-1 ~ a, + 33 )n(1 — ¢) + 2m, — 2x,

Cro a + xq(4 — 3x) + 2x%a,(—3 + 2x,)

3 + 2m, — 53, — 2a¢h,
= 2(1 + 3y )n{1 — ¢) — 2(1 — 3B,)An(6,)

5 + 16x¥—4 + 3x,)
a3

0

3 — 20n(f,)

3a2 — 6x.al

Yool + 7o)

—a,1 + 2v,)

2a,n(1 — ¢) + 2(—1 + 38,0n(6;) + 3
+2m, - 53,

a, + 2x%a,(—3 + 2x)

2 + 2m, + 2n, — 53, — 2(1 + 3v,)in(f,)
= 2(1 — 38, )8n(6,}

0

ai

0

3 — 20n(6,)

0

Yolo(1 + 1)?

—ag(l + 2v,)0

2a,4n{f,) + 2(—1 + 38,)¢n(8,) + 3 + 2m,

Bo

0

"1, 0 = m/aand D < q/a (see fig. 2)
23D > mja and D = g/a

31y D > mje and D > q/«

8, = 2any/(1 + 2v)
88, = ah(1 — @)/3.: 8y = (1 — ¢)8,
O x, =3, — ah, X, = —y, + ah,
24
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Table B2—Relationships tor constants K, (i = 1,17)
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Appropriate notch depth intervai

|

o 'y 2
K, 32 Same
K, 3, Same B
K, 2tn(1 — o) Same
K, 8x3 Same "
“Ks Is Bo(a, ~ ) + 8./a, *
Ko 1 3, = 280, + 23,i/a, .
K, 12x2 - 4a? -240°h3n(A,) + 8x3 /a, -
Ks S 1+ 3,) Same
Ko 3.2 - 33.) Same
Ko m, = %X + (=1 + 38,801 — o) Same
K, 16x3(4 - 3x,) Same
K., 1 i(a2 — 326 + p2l/a2 -
Kua 6x, — 4a, 12a%h25,(1 — 6,) + 6a°h3n(d,) + 2x3i/aZ
K., ‘30( 1~ do) do(_1 + 30)‘03(3‘3 - Bo) + ﬂo}/ao
K,s 1 - 23, (1 — 28,0, + B,(—2 + 3BN0. — 1)/a,
5K g (1 — ) en (8 + la, — x, + (1 — 38,)en (8.)i/a,
K,, axl( -2 + a,) + 2x§(3 — 2x,) x4 — 3xg)/a,
1,0 = (m — ajfa (see fig. 1)
2130 > (m — a)a DR
3% = 3, — ah, : 1
0= ahyf(B, — a) .:': J
S8, = (1 — o), .o
o _
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